Nanofluidic Device for Continuous Multiparameter Quality Assurance of Biologics

Abstract

Process analytical technology (PAT) is critical for the manufacture of high-quality biologics as it enables continuous, real-time and on-line/at-line monitoring during biomanufacturing processes. The conventional analytical tools currently used have many restrictions to realizing the PAT of current and future biomanufacturing. Here we describe a nanofluidic device for the continuous monitoring of biologics' purity and bioactivity with high sensitivity, resolution and speed. Periodic and angled nanofilter arrays served as the molecular sieve structures to conduct a continuous size-based analysis of biologics. A multiparameter quality monitoring of three separate commercial biologic samples within 50 minutes has been demonstrated, with 20 µl of sample consumption, inclusive of dead volume in the reservoirs. Additionally, a proof-of-concept prototype system, which integrates an on-line sample-preparation system and the nanofluidic device, was demonstrated for at-line monitoring. Thus, the system is ideal for on-site monitoring, and the real-time quality assurance of biologics throughout the biomanufacturing processes.

References

  1. Rader, R. A. (Re)defining biopharmaceutical. Nat. Biotechnol. 26, 743–751 (2008).

    CAS  Article  Google Scholar

  2. Baumann, A. Early development of therapeutic biologics-pharmacokinetics. Curr. Drug Metab. 7, 15–21 (2006).

    CAS  Article  Google Scholar

  3. Leader, B., Baca, Q. J. & Golan, D. E. Protein therapeutics—a summary and pharmacological classification. Nat. Rev. Drug Discov. 7, 21–39 (2008).

    CAS  Article  Google Scholar

  4. Taylor, P. C. & Feldmann, M. Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 578–582 (2009).

    CAS  Article  Google Scholar

  5. Menard, S., Pupa, S. M., Campiglio, M. & Tagliabue, E. Biologic and therapeutic role of HER2 in cancer. Oncogene 22, 6570–6578 (2003).

    CAS  Article  Google Scholar

  6. Goeddel, D. V. et al. Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc. Natl Acad. Sci. USA 76, 106–110 (1979).

    CAS  Article  Google Scholar

  7. Guildford-Blake, R. & Strickland, D. Guide to Biotechnology 2008 (Biotechnology Industry Organization, 2008).

    Google Scholar

  8. Visiongain, World Biological Drugs Market 2013–2023 (Visiongain, 2013).

  9. EvaluatePharma, World Preview 2015, Outlook to 2020 (EvaluatePharma, 2015).

  10. Wang, W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int. J. Pharm. 185, 129–188 (1999).

    CAS  Article  Google Scholar

  11. Frokjaer, S. & Otzen, D. E. Protein drug stability: a formulation challenge. Nat. Rev. Drug Discov. 4, 298–306 (2005).

    CAS  Article  Google Scholar

  12. Giezen, T. J. et al. Safety-related regulatory actions for biologicals approved in the United States and the European Union. J. Am. Med. Assoc. 300, 1887–1896 (2008).

    CAS  Article  Google Scholar

  13. Teixeira, A. P., Oliveira, R., Alves, P. M. & Carrondo, M. J. T. Advances in on-line monitoring and control of mammalian cell cultures: supporting the PAT initiative. Biotechnol. Adv. 27, 726–732 (2009).

    CAS  Article  Google Scholar

  14. Rathore, A. S., Bhambure, R. & Ghare, V. Process analytical technology (PAT) for biopharmaceutical products. Anal. Bioanal. Chem. 398, 137–154 (2010).

    CAS  Article  Google Scholar

  15. Pais, D. A. M., Carrondo, M. J. T., Alves, P. M. & Teixeira, A. P. Towards real-time monitoring of therapeutic protein quality in mammalian cell processes. Curr. Opin. Biotechnol. 30, 161–167 (2014).

    CAS  Article  Google Scholar

  16. Alhusban, A. A., Gaudry, A. J., Breadmore, M. C., Gueven, N. & Guijt, R. M. On-line sequential injection-capillary electrophoresis for near-real-time monitoring of extracellular lactate in cell culture flasks. J. Chromatogr. A 1323, 157–162 (2014).

    CAS  Article  Google Scholar

  17. St Amand, M. M., Ogunnaike, B. A. & Robinson, A. S. Development of at-line assay to monitor charge variants of MAbs during production. Biotechnol. Prog. 30, 249–255 (2014).

    CAS  Article  Google Scholar

  18. Hatch, A. V., Herr, A. E., Throckmorton, D. J., Brennan, J. S. & Singh, A. K. Integrated preconcentration SDS–PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels. Anal. Chem. 78, 4976–4984 (2006).

    CAS  Article  Google Scholar

  19. Fu, J., Mao, P. & Han, J. A nanofilter array chip for fast gel-free biomolecule separation. Appl. Phys. Lett. 87, 263902 (2005).

    Article  Google Scholar

  20. Han, J. & Craighead, H. G. Separation of long DNA molecules in a microfabricated entropic trap array. Science 288, 1026–1029 (2000).

    CAS  Article  Google Scholar

  21. Bousse, L. et al. Protein sizing on a microchip. Anal. Chem. 73, 1207–1212 (2001).

    CAS  Article  Google Scholar

  22. Huang, L. R. et al. A DNA prism for high-speed continuous fractionation of large DNA molecules. Nat. Biotechnol. 20, 1048–1051 (2002).

    CAS  Article  Google Scholar

  23. Fu, J., Schoch, R. B., Stevens, A. L., Tannenbaum, S. R. & Han, J. A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins. Nat. Nanotech. 2, 121–128 (2007).

    CAS  Article  Google Scholar

  24. Yamada, M., Mao, P., Fu, J. & Han, J. Rapid quantification of disease-marker proteins using continuous-flow immunoseparation in a nanosieve fluidic device. Anal. Chem. 81, 7067–7074 (2009).

    CAS  Article  Google Scholar

  25. Cheow, L. F., Bow, H. & Han, J. Continuous-flow biomolecule concentration and detection in a slanted nanofilter array. Lab Chip 12, 4441–4448 (2012).

    CAS  Article  Google Scholar

  26. Han, J. & Craighead, H. G. Characterization and optimization of an entropic trap for DNA separation. Anal. Chem. 74, 394–401 (2002).

    CAS  Article  Google Scholar

  27. Bow, H., Fu, J. & Han, J. Decreasing effective nanofluidic filter size by modulating electrical double layers: separation enhancement in microfabricated nanofluidic filters. Electrophoresis 29, 4646–4651 (2008).

    CAS  Article  Google Scholar

  28. Fu, J., Yoo, J. & Han, J. Molecular sieving in periodic free-energy landscapes created by patterned nanofilter arrays. Phys. Rev. Lett. 97, 018103 (2006).

    Article  Google Scholar

  29. Riggin, R. M., Dorulla, G. K. & Miner, D. J. A reversed-phase high-performance liquid chromatographic method for characterization of biosynthetic human growth hormone. Anal. Biochem. 167, 199–209 (1987).

    CAS  Article  Google Scholar

  30. Riggin, R. M., Shaar, C. J., Dorulla, G. K., Lefeber, S. D. & Miner, D. J. High-performance size-exclusion chromatographic determination of the potency of biosynthetic human growth hormone products. J. Chromatogr. A 435, 307–318 (1988).

    CAS  Article  Google Scholar

  31. Bodo, G., Maurer-Fogy, I., Falkner, E. & Lindner, S. J. Process for preparing and purifying alpha-interferon. US patent 5196323 A (1993).

  32. Grabstein, K. H. & Morrissey, P. J. Treatment of bacterial diseases with granulocyte-macrophage colony stimulating factor (GM-CSF). US patent 5162111 A (1992).

  33. Geigert, J. The Challenge of CMC Regulatory Compliance for Biopharmaceuticals and Other Biologics (Springer, 2013).

    Book  Google Scholar

  34. Mahler, H.-C., Friess, W., Grauschopf, U. & Kiese, S. Protein aggregation: pathways, induction factors and analysis. J. Pharm. Sci. 98, 2909–2934 (2009).

    CAS  Article  Google Scholar

  35. Wang, W. Protein aggregation and its inhibition in biopharmaceutics. Int. J. Pharm. 289, 1–30 (2005).

    CAS  Article  Google Scholar

  36. Hawe, A. et al. Forced degradation of therapeutic proteins. J. Pharm. Sci. 101, 895–913 (2012).

    CAS  Article  Google Scholar

  37. International Council of Harmonisation. Guideline for the photostability testing of new drug substances and products. Fed. Regis. 62, 27115–27122 (1997).

  38. Lu, A. E. et al. Control systems technology in the advanced manufacturing of biologic drug. In 2015 IEEE Conf. Control Applications 1505–1515 (2015).

  39. Adamo, A. et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science 352, 61–67 (2016).

    CAS  Article  Google Scholar

  40. Fu, J., Mao, P. & Han, J. Continuous-flow bioseparation using microfabricated anisotropic nanofluidic sieving structures. Nat. Protoc. 4, 1681–1698 (2009).

    CAS  Article  Google Scholar

  41. Mao, P. & Han, J. Fabrication and characterization of 20 nm planar nanofluidic channels by glass–glass and glass–silicon bonding. Lab Chip 5, 837–844 (2005).

    CAS  Article  Google Scholar

  42. Chandra, D., Morrison, C. J., Woo, J., Cramer, S. & Karande, P. Design of peptide affinity ligands for S-protein: a comparison of combinatorial and de novo design strategies. Mol. Divers. 17, 357–369 (2013).

    CAS  Article  Google Scholar

  43. Wang, Y. M. et al. Single-molecule studies of repressor–DNA interactions show long-range interactions. Proc. Natl Acad. Sci. USA 102, 9796–9801 (2005).

    CAS  Article  Google Scholar

  44. Sun, L. et al. A facile microdialysis interface for on-line desalting and identification of proteins by nano-electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 22, 2391–2397 (2008).

    CAS  Article  Google Scholar

Download references

Acknowledgements

We thank P. Mao for providing advice on the nanofilter fabrication, the MIT Microsystems Technology Laboratories for support in the fabrication, P. W. Barone for discussion and assistance with the sample handling and J.-F. P. Hamel for his support in the cell culture and analysis. This work was mainly supported by the Defense Advanced Research Projects Agency and SPAWAR Systems Center Pacific (N66001-13-C-4025) to S.H.K., D.C., W.O., T.K., P.K. and J.H. a Siebel fellowship to W.O. and a Samsung Scholarship to T.K.

Author information

Authors and Affiliations

Contributions

S.H.K. and J.H. conceived the project and S.H.K. designed and fabricated the device. S.H.K. conceived and performed the experiments for purity and activity monitoring with both non-degraded and degraded drugs using the at-line monitoring system and analysed the data. D.C. screened and provided peptide sequences for hGH and IFN, W.O. provided information on how to prepare the degraded drugs, T.K. cultured CHO-K1 cells in batch mode and provided IgG1. S.H.K. and J.H. wrote the manuscript, and J.H. and P.K. supervised the project.

Corresponding author

Correspondence to Jongyoon Han.

Ethics declarations

Competing interests

J.H. and S.H.K. have filed a patent application for the nanofilter device. P.K. and D.C. plan on filing patent applications for the peptide ligands.

Supplementary information

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ko, S., Chandra, D., Ouyang, W. et al. Nanofluidic device for continuous multiparameter quality assurance of biologics. Nature Nanotech 12, 804–812 (2017). https://doi.org/10.1038/nnano.2017.74

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI : https://doi.org/10.1038/nnano.2017.74

Further reading

  • Bacterial biopolymers: from pathogenesis to advanced materials

    • M. Fata Moradali
    • Bernd H. A. Rehm

    Nature Reviews Microbiology (2020)

  • Mechanism of rectification of polymer motion in an asymmetric nano-channel

    • Maedeh Heidari
    • Mahdieh Mikani
    • Narges Nikoofard

    Journal of Nanostructure in Chemistry (2020)

  • High-performance bioanalysis based on ion concentration polarization of micro-/nanofluidic devices

    • Chen Wang
    • Yang Wang
    • Xing-Hua Xia

    Analytical and Bioanalytical Chemistry (2019)

singletonvagind.blogspot.com

Source: https://www.nature.com/articles/nnano.2017.74

0 Response to "Nanofluidic Device for Continuous Multiparameter Quality Assurance of Biologics"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel