If a Function F is Undefined at X a Then F is Not Continuous at X a

\(\require{cancel}\newcommand{\dee}[1]{\mathrm{d}#1} \newcommand{\half}{ \frac{1}{2} } \newcommand{\ds}{\displaystyle} \newcommand{\ts}{\textstyle} \newcommand{\es}{ {\varnothing}} \newcommand{\st}{ {\mbox{ s.t. }} } \newcommand{\pow}[1]{ \mathcal{P}\left(#1\right) } \newcommand{\set}[1]{ \left\{#1\right\} } \newcommand{\lin}{{\text{LIN}}} \newcommand{\quot}{{\text{QR}}} \newcommand{\simp}{{\text{SMP}}} \newcommand{\diff}[2]{ \frac{\mathrm{d}#1}{\mathrm{d}#2}} \newcommand{\bdiff}[2]{ \frac{\mathrm{d}}{\mathrm{d}#2} \left( #1 \right)} \newcommand{\ddiff}[3]{ \frac{\mathrm{d}^#1#2}{\mathrm{d}{#3}^#1}} \renewcommand{\neg}{ {\sim} } \newcommand{\limp}{ {\;\Rightarrow\;} } \newcommand{\nimp}{ {\;\not\Rightarrow\;} } \newcommand{\liff}{ {\;\Leftrightarrow\;} } \newcommand{\niff}{ {\;\not\Leftrightarrow\;} } \newcommand{\De}{\Delta} \newcommand{\bbbn}{\mathbb{N}} \newcommand{\bbbr}{\mathbb{R}} \newcommand{\bbbp}{\mathbb{P}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cV}{\mathcal{V}} \newcommand{\Si}{\Sigma} \newcommand{\arccsc}{\mathop{\mathrm{arccsc}}} \newcommand{\arcsec}{\mathop{\mathrm{arcsec}}} \newcommand{\arccot}{\mathop{\mathrm{arccot}}} \newcommand{\erf}{\mathop{\mathrm{erf}}} \newcommand{\smsum}{\mathop{{\ts \sum}}} \newcommand{\atp}[2]{ \genfrac{}{}{0in}{}{#1}{#2} } \newcommand{\ave}{\mathrm{ave}} \newcommand{\llt}{\left \lt } \newcommand{\rgt}{\right \gt } \newcommand{\YEaxis}[2]{\draw[help lines] (-#1,0)--(#1,0) node[right]{$x$};\draw[help lines] (0,-#2)--(0,#2) node[above]{$y$};} \newcommand{\YEaaxis}[4]{\draw[help lines] (-#1,0)--(#2,0) node[right]{$x$};\draw[help lines] (0,-#3)--(0,#4) node[above]{$y$};} \newcommand{\YEtaxis}[4]{\draw[help lines] (-#1,0)--(#2,0) node[right]{$t$};\draw[help lines] (0,-#3)--(0,#4) node[above]{$y$};} \newcommand{\YEtaaxis}[4]{\draw[help lines] (-#1,0)--(#2,0) node[right]{$t$}; \draw[help lines] (0,-#3)--(0,#4) node[above]{$y$};} \newcommand{\YExcoord}[2]{\draw (#1,.2)--(#1,-.2) node[below]{$#2$};} \newcommand{\YEycoord}[2]{\draw (.2,#1)--(-.2,#1) node[left]{$#2$};} \newcommand{\YEnxcoord}[2]{\draw (#1,-.2)--(#1,.2) node[above]{$#2$};} \newcommand{\YEnycoord}[2]{\draw (-.2,#1)--(.2,#1) node[right]{$#2$};} \newcommand{\YEstickfig}[3]{ \draw (#1,#2) arc(-90:270:2mm); \draw (#1,#2)--(#1,#2-.5) (#1-.25,#2-.75)--(#1,#2-.5)--(#1+.25,#2-.75) (#1-.2,#2-.2)--(#1+.2,#2-.2);} \newcommand{\IBP}[7]{ \begin{array}{|c | l | l |} \hline \color{red}{\text{Option 1:}} & u=#2 &\color{red}{\dee{u}=#3 ~ \dee{#1}} \\ & \dee{v}=#5~\dee{#1} &\color{red}{v=#7} \\ \hline \color{blue}{\text{Option 2:}} & u=#5 &\color{blue}{\dee{u}=#6 ~ \dee{#1}} \\ &\dee{v}=#2 \dee{#1} &\color{blue}{v=#4} \\ \hline \end{array} } \renewcommand{\textcolor}[2]{{\color{#1}{#2}}} \newcommand{\trigtri}[4]{ \begin{tikzpicture} \draw (-.5,0)--(2,0)--(2,1.5)--cycle; \draw (1.8,0) |- (2,.2); \draw[double] (0,0) arc(0:30:.5cm); \draw (0,.2) node[right]{$#1$}; \draw (1,-.5) node{$#2$}; \draw (2,.75) node[right]{$#3$}; \draw (.6,1.1) node[rotate=30]{$#4$}; \end{tikzpicture}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)

Subsection 2.2.3 Where is the Derivative Undefined?

According to Definition 2.2.1, the derivative \(f'(a)\) exists precisely when the limit \(\lim\limits_{x\rightarrow a} \frac{f(x)-f(a)}{x-a}\) exists. That limit is also the slope of the tangent line to the curve \(y=f(x)\) at \(x=a\text{.}\) That limit does not exist when the curve \(y=f(x)\) does not have a tangent line at \(x=a\) or when the curve does have a tangent line, but the tangent line has infinite slope. We have already seen some examples of this.

  • In Example 2.2.7, we considered the function \(f(x)=\frac{1}{x}\text{.}\) This function "blows up" (i.e. becomes infinite) at \(x=0\text{.}\) It does not have a tangent line at \(x=0\) and its derivative does not exist at \(x=0\text{.}\)
  • In Example 2.2.10, we considered the function \(f(x)=|x|\text{.}\) This function does not have a tangent line at \(x=0\text{,}\) because there is a sharp corner in the graph of \(y=|x|\) at \(x=0\text{.}\) (Look at the graph in Example 2.2.10.) So the derivative of \(f(x)=|x|\) does not exist at \(x=0\text{.}\)

Here are a few more examples.

Example 2.2.11 Derivative at a discontinuity

Visually, the function

\(H(x) = \begin{cases} 0 & \text{if }x \le 0 \\ 1 & \text{if }x \gt 0 \end{cases}\)

does not have a tangent line at \((0,0)\text{.}\) Not surprisingly, when \(a=0\) and \(h\) tends to \(0\) with \(h \gt 0\text{,}\)

\begin{gather*} \frac{H(a+h)-H(a)}{h} =\frac{H(h)-H(0)}{h} =\frac{1}{h} \end{gather*}

blows up. The same sort of computation shows that \(f'(a)\) cannot possibly exist whenever the function \(f\) is not continuous at \(a\text{.}\) We will formalize, and prove, this statement in Theorem 2.2.14, below.

Example 2.2.12 \(\diff{}{x}x^{1/3}\)

Visually, it looks like the function \(f(x) = x^{1/3}\text{,}\) sketched below, (this might be a good point to recall that cube roots of negative numbers are negative — for example, since \((-1)^3=-1\text{,}\) the cube root of \(-1\) is \(-1\)),

has the \(y\)–axis as its tangent line at \((0,0)\text{.}\) So we would expect that \(f'(0)\) does not exist. Let's check. With \(a=0\text{,}\)

\begin{align*} f'(a)\amp= \lim_{h\rightarrow 0}\frac{f(a+h)-f(a)}{h} =\lim_{h\rightarrow 0}\frac{f(h)-f(0)}{h} =\lim_{h\rightarrow 0}\frac{h^{1/3}}{h}\\ \amp=\lim_{h\rightarrow 0}\frac{1}{h^{2/3}} =DNE \end{align*}

as expected.

Example 2.2.13 \(\diff{}{x}\sqrt{|x|}\)

We have already considered the derivative of the function \(\sqrt{x}\) in Example 2.2.9. We'll now look at the function \(f(x) = \sqrt{|x|}\text{.}\) Recall, from Example 2.2.10, the definition of \(|x|\text{.}\)

When \(x \gt 0\text{,}\) we have \(|x|=x\) and \(f(x)\) is identical to \(\sqrt{x}\text{.}\) When \(x \lt 0\text{,}\) we have \(|x|=-x\) and \(f(x)=\sqrt{-x}\text{.}\) So to graph \(y=\sqrt{|x|}\) when \(x \lt 0\text{,}\) you just have to graph \(y=\sqrt{x}\) for \(x \gt 0\) and then send \(x\rightarrow -x\) — i.e. reflect the graph in the \(y\)–axis. Here is the graph.

The pointy thing at the origin is called a cusp. The graph of \(y=f(x)\) does not have a tangent line at \((0,0)\) and, correspondingly, \(f'(0)\) does not exist because

\begin{gather*} \lim_{h\rightarrow 0^+}\frac{f(h)-f(0)}{h} =\lim_{h\rightarrow 0^+}\frac{\sqrt{|h|}}{h} =\lim_{h\rightarrow 0^+}\frac{1}{\sqrt{h}} =DNE \end{gather*}

Proof

The function \(f(x)\) is continuous at \(x=a\) if and only if the limit of

\begin{gather*} f(a+h) - f(a) = \frac{f(a+h)-f(a)}{h}\ h \end{gather*}

as \(h\rightarrow 0\) exists and is zero. But if \(f(x)\) is differentiable at \(x=a\text{,}\) then, as \(h\rightarrow 0\text{,}\) the first factor, \(\frac{f(a+h)-f(a)}{h}\) converges to \(f'(a)\) and the second factor, \(h\text{,}\) converges to zero. So the product provision of our arithmetic of limits Theorem 1.4.3 implies that the product \(\frac{f(a+h)-f(a)}{h}\ h\) converges to \(f'(a)\cdot 0=0\) too.

Notice that while this theorem is useful as stated, it is (arguably) more often applied in its contrapositive  7 If you have forgotten what the contrapositive is, then quickly reread Footnote 1.3.5 in Section 1.3. form:

As the above examples illustrate, this statement does not tell us what happens if \(f\) is continuous at \(x=a\) — we have to think!

singletonvagind.blogspot.com

Source: https://www.math.ubc.ca/~CLP/CLP1/clp_1_dc/subsection-13.html

0 Response to "If a Function F is Undefined at X a Then F is Not Continuous at X a"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel